Reachability - tradução para Inglês
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

Reachability - tradução para Inglês

GRAPH THEORY
Reachable; Graph reachability; Kameda's algorithm; Thorup's algorithm; Reachability matrix
  • A suitable digraph for Kameda's method with <math>s</math> and <math>t</math> added.
  • The same graph as above after Kameda's algorithm has run, showing the DFS labels for each vertex

reachability         
(n.) = accesibilidad, facilidad de acceso, facilidad de alcance
Ex: Most important factors were reachability of the udder for the piglets and reachability of the sow and piglets for the stockman.
Reachability         
Asequibilidad
reachable         
(adj.) = alcanzable, conseguible, obtenible
Ex: I think this is a reachable goal, but to attain it we must first understand where and why the library user goes wrong under our present system.
----
* unreachable = inalcanzable, inaccesible, inasequible, irrealizable

Definição

Reachable
·adj Being within reach.

Wikipédia

Reachability

In graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex s {\displaystyle s} can reach a vertex t {\displaystyle t} (and t {\displaystyle t} is reachable from s {\displaystyle s} ) if there exists a sequence of adjacent vertices (i.e. a walk) which starts with s {\displaystyle s} and ends with t {\displaystyle t} .

In an undirected graph, reachability between all pairs of vertices can be determined by identifying the connected components of the graph. Any pair of vertices in such a graph can reach each other if and only if they belong to the same connected component; therefore, in such a graph, reachability is symmetric ( s {\displaystyle s} reaches t {\displaystyle t} iff t {\displaystyle t} reaches s {\displaystyle s} ). The connected components of an undirected graph can be identified in linear time. The remainder of this article focuses on the more difficult problem of determining pairwise reachability in a directed graph (which, incidentally, need not be symmetric).